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ABSTRACT atrue value to be provided by more sources than any particular false

_one, so we can apply voting and take the value provided by the ma-
Ij_ority of the sources as the truth. Unfortunately, copying between
data sources is common in practice, especially on the web [1]; a
value provided by one data source, no matter true or false, can be
copied by many other sources. “A lie told often enough becomes

Many data management applications, such as setting up Web por:
tals, managing enterprise data, managing community data, and shal
ing scientific data, require integrating data from multiple sources.
Each of these sources provides a set of values and differentesourc
can often provide conflicting values. To present quality data to J - AR o
users, it is critical that data integration systems can resolve con- _the truth_ by Viadimir Lenir); te”'f‘g th_e truth from co_nfllctlng .
flicts and discover true values. Typically, we expect a true value to 'Nformation becomes extremely tricky in such a situation. In this
be provided by more sources than any particular false one, so wePaper, we consider the following problem: from the confhctmg val-
can take the value provided by the majority of the sources as the ues provided by a large number of sources among which some may
truth. Unfortunately, a false value can be spread through copying copy from oth_ers, hovx_/ can one _deC|de ‘.Nh'Ch is the true value?
and that makes truth discovery extremely tricky. In this paper, we We_ are mainly _motlvated by |r_1tegrat|ng Fiata from_t_he Wweb. In
consider how to find true values from conflicting information when 2 variety of domains, such as science, business, politics, art, enter-
there are a large number of sources, among which some may Copytalnment, sports, _trav_el, there_ are a huge number of c_iata sources
from others. that. seek to provide information and a Ipt of thg prqwded |nfor-
We present a novel approach that considkgendencbetween mation ov_erlaps. W_hereas some of this mformatlo_n is dynamic, a
data sources in truth discovery. Intuitively, if two data sources pro- large portion of the information IS about some Stat'(.: aspect of the
vide a large number of common values and many of these valuesworld' such as authors and publishers of books,_ directors, actors,
are rarely provided by other sourcesd, particular false values), f'and actresses of movies, revenue ofa company in pa_st years, pres
it is very likely that one copies from the other. We apply Bayesian idents of a country in the pgst, and.capltalls of countries; the data
analysis to decide dependence between sources and design an algGOUces rarely update such information. This paper focuses on such

rithm that iteratively detects dependence and discovers truth from Static |nformat|og and considers a snapsh(()jt of data fron|1 different
conflicting information. We also extend our model by consider- SOU'ces. Many data sources may copy and paste, crawl, or aggre-

ing accuracyof data sources ansimilarity between values. Our gate data from other sources, and publish the copied data without

experiments on synthetic data as well as real-world data show thate)(pl'?t')tI até”b”t'%n' In St‘)JCh applications, taklngﬂlntol cogsmeratlon
our algorithm can significantly improve accuracy of truth discovery PPSSiPle dependence between sources can often lead to more pre-

and is scalable when there are a large number of data sources. cise truth-discovery re§ults. . . . .
Ideally, when applying voting, we would like to ignore copied

information; however, this raises at least three challenges. First,

1. INTRODUCTION in many applications we do not know how each source obtains its
Many data management applications require integrating data fromdata, so we have to discover copiers from a snapshot of data. The
multiple sources, each of which provides a set of values as “facts”. discovery is non-trivial as sharing common data does not in itself
However, “facts and truth really don’'t have much to do with each imply copying. Second, even when we decide that two sources
other” (by William Faulkney. Different sources can often provide  are dependent, with only a snapshot it is not obvious which one is
conflicting values, some being true while some being false. To pro- a copier. Third, a copier can also provide some data by itself or

vide quality data to users, it is critical that data integration systems verify some of the copied data, so it is inappropriate to ignore all
can resolve conflicts and discover true values. Typically, we expect data it provides.

A .. Inthis paper, we present a novel approach that consatigren-
si\gﬁlt(lcgga:lisiieggrl\]/l(%rl?:%aTr?Z(s)ggP&tlegog)y the European Commis dencebetween data sources in truth discovery. Our technique con-

siders not only whether two sources share the same values, but also

whether the shared values are true or false. Intuitively, for a partic-
Permission to copy without fee all or part of this material isrged provided ular object, there are often multiple distinct false values but usually
that the copies are not made or distributed for direct commieadiaantage, only one true value. Sharing the same true value does not necessar-
the VLDB copyright notice and the title of the publicatiortkits date appear, ily imply sources being dependent; however, sharing the same false
and notice is given that copying is by permission of the VerygeaData value is typically a rare event when the sources are fully indepen-
Batse E('j‘,d?‘,"t’)mte”tt- IT? copy che“"’;se' Ordtlo republish, to pofstemter:s dent. Thus, if two data sources share a lot of false values, they are
ng?igﬁe'rSKCKAe 0 1ISts, Tequires a fee andior speciaiesion from the more likely to be dependent. We develop Bayes models that com-
VLDB ‘09, August 24-28, 2009, Lyon, France pute the probability of two data sources being dependent and take
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Table 1: The motivating example: five data sources provide
information on the affiliations of five researchers. OnlyS; pro-
vides all true values.

S1 S S3 S Ss
Stonebraker MIT Berkeley | MIT MIT MS
Dewitt MSR MSR UWisc | UWisc | UWisc
Bernstein MSR MSR MSR MSR MSR
Carey UCI AT&T BEA BEA BEA
Halevy Google | Google uw uw uw

the result into consideration in truth discovery. Note that detection

of dependence between data sources is based on knowledge of tru
values, whereas correctly deciding true values requires knowledge
of source dependence. There is an inter-dependence between therH

and we solve the problem by iteratively deciding source depen-
dence and discovering truth from conflicting information. To the
best of our knowledge, source-
investigated for the purpose of truth discovery.

We also consideaccuracyin voting: we trust an accurate data
source more and give values that it provides a higher weight. This
method requires identifying not only if a pair of sources are de-
pendent, but also which source is the copier. Indeed, accuracy in
itself is a clue of direction of dependence: given two data sources,
if the accuracy of their common data is highly different from that
of one of the sources, that source is more likely to be a copier.
Note that considering accuracy of sources in truth discovery has

3. Finally, we tested our algorithms on synthetic data and real-
world data sets. The experimental results show that our algo-
rithm can significantly improve accuracy of truth discovery
and is scalable when there are a large number of data sources.

We envision our work as a first step towards integrating data from
multiple sources where some may copy from others. We expect
broad impact on various aspects of data sharing and integration,
including resolving conflicts from multiple and potentially depen-
dent sources in data integration, generating reference data for the
purpose of Master Data Management [12], detecting and prevent-
ing falsification by a group of malicious sources, recommending
gustwor‘[hy data sources, efficiently answering queries from multi-
ple sources with awareness of copiers, etc.

The rest of this paper is structured as follows. Section 2 formally
efines the problem and the notion of dependence between data
sources. Section 3 describes the core model that detects copiers
and discovers truth accordingly. Section 4 describes an algorithm

that considers both dependence and accuracy in truth discovery.

Section 5 presents several extensions and Section 6 describes ex-
perimental results. Finally, Section 7 discusses related work and
Section 8 concludes.

2. OVERVIEW

This section formally describes the problem we solve, defines
dependence between data sources, and overviews models we presen
in this paper.

been explored in [16]. Whereas we share the basic idea, we presenproblem statementWe consider a set oflata sourcesS and a
a different model for computing source accuracy and extend it t0 set of objects(®. An object represents a particular aspect of a
incorporate the notion of source dependence. We present more dereal-world entity, such as the director of a movie; in a relational
tailed comparison in Section 4.4. database, an object corresponds to a cell in a table. For each object
We now illustrate our main techniques with an example. O € 0, asourceS € S can (but not necessarily) providevalue
Among different values provided for an object, one correctly de-
scribes the real world and tsue, and the rest aréalse In this
paper we solve the following problem: given a snapshot of data
sources inS, decide the true value for each objézte O.
We note that a value provided by a data source can either be
atomic, or a set or list of atomic values.g, author list of a book).
In the latter case, we consider the value as true if the atomic values
4re correct and the set or list is complete (and order preserved for a
’ list). This setting already fits many real-world applications and the

ExampLE 1.1. Consider the five data sources in Table 1. They
provide information on affiliations of five researchers and o$tly
provides all correct data. However, since the affiliations provided
by S5 are copied bys, and S5 (with certain errors during copying),

a naive voting would consider them as the majority and so make
wrong decisions for three researchers.

We solve the problem by considering dependence between dat
sources. If we knew which values are true and which are false
we vyould suspect thafls, S4 and S5 are dependent, because they fc,olution is non-trivial.
provide the same false values. On the other hand, we would suspec .
the dependence betwesh and S» much less, as they share only ~Dependence between sources/e say that there exists depen-
true values. Based on this analysis, we would ignore the values dencebetween two data sourcésand' if they derive the same

provided byS; and S5 and then decide the correct affiliation for ~ Part of their data directly or transitively from a common source

four researchers (except Carey). (can be one of andT). Accordingly, there are two types of data
Further, we consider accuracy of data sources. Based on the Sourcesindependent sourcesdcopiers

current voting resultsS; is more accurate thars, and Ss. Thus, An independent sourgerovides all values independently. It may

we would trustS; more and decide Carey’s affiliation correctly. provide some erroneous values because of incorrect knowledge of

Note that if we do not consider dependence betwgers, and the real world, mis-spellings, etc. We thus further distinggiebd

S5, we would considess and S, as the most accurate and that  independent sources frobadones: a data source is considered to

further strengthens the wrong information they provide. O be good if for each object it is more likely to provide the true value
than anyparticular false value; otherwise, it is considered to be

bad.

A copier copies a part (or all) of data from other sources (in-

1. First, we formalize the notion of source dependence and preseﬂlépendent sources or copiers). It can copy from multiple sources
Bayes models to discover dependence from a snapshot ofpy union, intersection, etc., and as we consider only a snapshot of
sources. data, cyclic copying on a particular object is impossible. In ad-

. Second, we incorporate the notion of accuracy of sources in dition, a copier may revise some of the copied values or add addi-
the analysis of source dependence, and design an algorithmtional values; though, such revised and added values are considered
that considers both dependence and accuracy in truth discov-as independent contributions by the copier.
ery. We further extend this algorithm by considering similar- To make our models tractable, we consider odilgct copying
ity between values and distribution of false values. in copying detection and truth discovery, where we say a satirce

In summary, our paper makes the following three contributions:



e Assumption 3 (No loop copyinglhe dependence relation-

Considering AccuPR . . .
probabilities ship between sources is acyclic.
N in depen analysis . . . .
SZT:;X'S”F% Our experiments on synthetic data that violate the assumptions and
accu cond Relaxing on real-world data, which may violate the assumptions, show that
Depen Accu <% Sim performance of our models is not sensitive to these assumptions.

Core model We note that the real world is complex: different sources may

Relaxing represent the same value in different ways, error rates on differen
Uni-false-val- : f H
dist cond NonUni data |tems_can be different, errors of cgrtaln type_s may happen more
often, copiers can have various copying behaviors, etc. Instead of
Extensions modeling every possible variant, our models capture the most sig-

nificant aspects of data providing and copying, so are tractable and
Figure 1: Models for truth discovery. can avoid overfitting. Indeed, as our experiments show, thelA
depends o if S copies fromT". However, as our experiments ~model already obtains high accuracy on real-world data and syn-
on synthetic data show, even in presence of transitive copying andthetic data.
co-copying from a hidden source, our algorithms still obtain high

accuracy in truth discovery. 3. DETECTING SOURCE DEPENDENCE
Models in this paper We start our discussion from a core case that  This section describes how we detect copiers and discover truth
satisfies the following three conditions, which we relax later: from conflicting information accordingly.

e Same source accuracfor each object, allindependentdata 3 1 Dependence of data sources
sources have the same probability of providing a true value.

e Uniform false-value distributionFor each object, there are
multiple false values in the underlying domain and an inde-
pendent source has the same probability of providing each of
them.

e Categorical value:For each object, values that do not match
exactly are considered as completely different.

AssumesS consists of two types of data sources: good indepen-
dent sources and copiers. Consider two souiess. € S. We
apply Bayes analysis to compute the probability tfiatind.S; are
dependent given observation of their data. For this purpose, we
need to compute the probability of the observed data, conditioned
on the dependence or independence of the sources.

Our computation requires several parametetsin > 1), the

In this core case, independent sourcesgam@dunder the follow- number of false values in the underlying domain for each object;
ing condition. For eacl® € O, lete(O) be the probability that a ¢ (0 < ¢ < 1), the probability that a value provided by a copier
source provides a false valuee(, error rate) onO andn(O) be is copied; and: (0 < ¢ < %), theerror rate-probability that
the number of false values @nin the underlying domain. Then, if  an independently provided value is false. Note that in practice, we
1—¢(0) > ;i((gi (i.e.e(0) < n?(())oll), independent sources may not know values of these parameters a-priori and the values

are good. Intuitively, given such a set of independent data squrces My vary from object to object and from source to source. We
we can discover true values by voting. The following proposition, P0otstrap our algorithms by setting the parameters to default values
which we prove and generalize in Section 4, formalizes this intu- initially and iteratively refining them by computing the estimated

ition. values according to the truth discovery and dependence detection
) B results (details given at the end of this section). ~
PrRoPOSITION2.1 (VOTING). LetO be an object and, be In our observation, we are interested in three sets of objébts:

a set of independent sources voting for In the core case, if denoting the set of objects on whi¢h and S, provide the same
e(0) < n(0) among the different values ab provided by true value,0¢, denoting the set of objects on which they provide

n(O)+1 ks _ ; ;
S,, the one provided by the maximum number of sources has thethe same false value, aiigl;, denoting the set of objects on which
highest probability to be true. O they provide different valuesl; UO; UO4 C O). Intuitively, two

) . . independent sources providing the same false value is a rare event;

Even for this core case, discovering dependence between datahys, if we fixO; U O; andO,, the more common false values that
sources and deciding true values are non-trivial; we solve the prob- g, and S, provide, the more likely that they are dependent. On
lem by the DEPENmModel (Section 3). Then, we relax tBame-  the other hand, if we fx0; and Oy, the fewer objects on which
source-acpuracyond_ltlon and present thedtu model (Sec_tlon 4). S, and S, provide different values, the more likely that they are
As extensions (Section 5), we present th& $nodel relaxing the dependent. We denote dythe observation o;, 0, O, and by
Categorical-valueondition, the NONUNI model relaxing th&niform- g, k; and k, their sizes respectively. We next describe how we
false-value-distributiorcondition, and the AcUPR model con-  compute conditional probability g based on these intuitions.
sidering probabilities of a value being true in dependence discov-  \\e first consider the case whe$e and.S; are independent, de-
ery (so in effect implicitly considering non-uniform distribution of  noted byS; L.S,. Since there is a single true value, the probability
false values as well). Figure 1 depicts the relationships between thethat; and.S, provide the same true value for obje@tis
models. Pr(0 € 04]S11S2) = (1 —¢)2. @)
AssumptionsTo make the computation tractable, our models make

the following assumptions. Under theUniform-false-value-distributiocondition, the prob-

ability that a data source provides a particular false value for object

e Assumption 1 (Independent valueShe values that are in-  Ois =. Thus, the probability tha$, andS provide the same false
dependently provided by a data source on different objects value forO is
are independent of each other. ~ ., &2

e Assumption 2 (Independent copyingjhe dependence be- Pr(0 € O4181182) = n - (2)" = T @
tween a pair of data sources is independent of the dependence Then, the probability tha$, and.S» provide different values on
between any other pair of data sources. an objectO, denoted byP; for convenience, is



2
Pr(O€0408118)=1—(1-¢)%— = =P,
n

3)
Following the Independent-valueassumption, the conditional

probability of observingp is

(1 _ 8)2kt€2kf P;d

Pr(®|S; LSs) = K

4

We next consider the case whéh and.S; are dependent, de-
noted byS: ~ Sa. There are two cases whefg and.S; provide
the same value for an objectO. First, with probabilityc, one
copiesv from the other and so is true with probabilityl — ¢ and
false with probabilitye. Second, with probability — ¢, the two
sources provide independently and so its probability of being true
or false is the same as in the case wher@and.S; are independent.
Thus, we have

n

(l-e)et(l-e?-(1-0), (9

s-c+i-(lfc). (6)
n

PT(O c 61‘51 ~ 52)

Pr(O € Of\Sl ~ 532)

Finally, the probability thatS; and.S, provide different values
on an object is that of; providing a value independently and the
value differs from that provided bg.:

Pr(0O € 04|81 ~ S2) =Py (1 —c). )

We computePr(®|S; ~ Sz) accordingly. Now we can com-
pute the probability of5; ~ S» by applying the Bayes Rule.

Pr(Sy ~ S2|®)
PT(‘I’|51 ~ SQ)PT'(Sl ~ SQ)
Pr(®|S1 ~ S2)Pr(S1 ~ S2) + Pr(®|S1L1S2)Pr(S1LS2)
l1-a

-1
k kq

(1+ (=2 M) )
Herea = Pr(S: ~ S2)(0 < « < 1) is the a-priori probability
that two data sources are dependent.

Eq.(8) has several nice properties that conform to the intuitions
we discussed early in this section, formalized as follows. (We pro-
vide proofs in [7].)

1—¢
1—ec+ece

Kt €

a cn+¢e—ce 1-—

THEOREM 3.1. LetS be a set of good independent sources and
copiers. Eq.(8) has the following three properties®n

1. Fixingk. + ks andkq4, whenk increases, the probability of
dependence increases;

2. Fixingk; + k¢ + kq, whenk, + k increases and none &f
andky decreases, the probability of dependence increases;

3. Fixing k; and k¢, whenk, decreases, the probability of de-
pendence increases. o

Note that Eq.(8) does not indicate direction of dependence; Sec-
tion 4 describes a model that detects directions of dependencies fo
sources of different accuracy.

Also note that in case of co-copying and transitive copying, Eq.(8)
can still compute a high probability of dependence, as a lot of
wrong values can be shared in such cases as well.

3.2 Vote count of a value

We have described how we decide if a pair of sources are depen-

dent. However, even if a source copies from another, it is possible
that it provides some of the values independently and it would be

inappropriate to ignore these values. We next describe how to count

the vote for a particular value. We start with ideal vote count and
then describe an approximation.

S1

N

S2 «—S3

(d)

Sl
S2 \3 S2 -

(a)

Sl

N

S3

Sl

N

S2 63

(b)

Figure 2: Dependence graphs with a dependence betweéh
and S5 and one betweenS; and Ss, where S1, S2, and S5 pro-
vide the same value on an object.

3.2.1 Ideal vote count

We start from the case where we know deterministically the de-
pendence relationship between sources and discuss probabilistic
dependence subsequently. Consider a specific valioe a par-
ticular objectO and letS, (v) be the set of data sources that pro-
vide v on O. We can draw alependence grap¥, where for each
S € 5,(v), there is a node, and for eadh, Sz € S, (v) whereS;
copies fromSs, there is an edge frorfi; to S.

For eachS ¢ S,(v), we denote byi(S, G) the out-degree of
in G, corresponding to the number of data sources from wisich
copies. Ifd(S, G) = 0, S is independent and its vote count fors
1. Otherwise, for each sourc® that.S copies from,S provides a
value independently of’ with probability 1 — c. According to the
Independent-copyingssumption, the probability thatprovidesv
independently of any other source('ﬂsfc)d(sm and the total vote
count ofv with respect ta7 is

V,G)= > (1-oU59,
SE€S,(v)

However, recall that Eq.(8) computes only a probability of de-
pendence and does not indicate its direction. Thus, we have to
enumerate all possible dependence graphs and take the sum of the
vote count with respect to each of them, weighted by the probability
of the graph. LetD, be the set of possible dependencies between
sources inS,(v) and we denote the probability @ ¢ D, by
p(D). Consider a subsdd C D, of m dependencies. According
to thelndependent-copyingssumption, the probability that all and
only dependencies il hold is

Pr(D) =Hpepp(D)pep,—p(l = p(D)).

As each dependence can have one of the two directions, there
are up ta2™ acyclic dependence graphs with this set of dependen-
cies. Intuitively, the more independent sources in a graph, the less
likely that all sources in the graph provide the same value. By ap-
plying Bayesian analysis, we can compute the probability of each
graph. We skip the equations for space consideration and illustrate
the computation of vote count in the following example.

ExAamMPLE 3.2. Consider three data sources, S> andSs that
provide the same valueon an object. Assume= .8 and between
each pair of sources the probability of dependence is .4. We can
computev’s vote count by enumerating all possible dependence
graphs.

(©

9)

(10)

e There is 1 graph with no dependence. All sources are inde-
pendent so the vote countlis+ 1 + 1 = 3. The probability

of this graph is(1 — .4)* = .216.

There are 6 graphs with only one dependence. The total
probability of graphs that contain a particular dependence is
(1 — .4)% x .4 = .144. Each dependence has two directions,
so the probability of each such graph.ist4/2 = .072. No
matter which direction the dependence is in, the vote count
is1+1+4.2=22.

There are 12 graphs with two dependencies. Figure 2 shows
the four that contain a dependence betwfemnd Ss, and a
dependence betweéh and.Ss. The sum of their probabili-
tiesis(1—.4) x.4% = .096. For each of the first three graphs

r



(Figure 2(a)-(c), each with a single independent source), the
vote countisl + .2 + .2 = 1.4 and by applying the Bayes
Rule we compute its probability a82 * .096 = .03. For

the last one (Figure 2(d), with two independent sources),
the vote count id + 1 + .22 = 2.04 and its probability
is.04 * .096 = .004.

e Finally, there are 6 acyclic graphs with three dependencies
(details ignored to save space), where each has vote count
1+ .24 .22 = 1.24 and probability.4® /6 = .011.

The total vote count af, computed as the weighted sum, is 2.08.
O

D nput: S, 0.
Output: The true value for each object @.
: V = 0; //decided true values

Vo = null; /ltrue values decided in the last round
. while (V # Vo)
Vo=V;V =0
for each(S1, 52 € S, 51 # S2)
Compute probability of dependence betwegnand.Ss;
for each (O € O)
Compute vote count of each value©f
Select the value with the maximal vote count and add
to V(if there are several values winning the same
number of votes, choose the previously selected one if
possible and randomly choose one otherwise);

3.2.2 Estimating vote count

Algorithm 1: VOTE: Discover true values.

As there are an exponential number of dependence graphs, com-

puting the vote count by enumerating all of them can be quite ex-
pensive. To make the analysis scalable, we shall find a way to
estimate the vote count in polynomial time.

We estimate a vote count by considering the data sources one by

one. For each sourcg, we denote byPre(S) the set of sources
that have already been considered an®byt(.S) the set of sources

that have not been considered yet. We compute the probability that

the value provided bys is independent of any source fre(S)
and take it as the vote count 6f The vote count computed in
this way is not precise becauseSfdepends only on sources in
Post(S) but some of those sources depend on sourcés-u(S),
our estimation still (incorrectly) count$’s vote. To minimize such
error, we wish that the probability thef depends on a source
S’ € Post(S) and S’ depends on a sourc§”’ € Pre(S) be

S1

S3

0.97

S5

0.99

S4
0.97

0.99
Round 1

Round 2

Figure 3: Probabilities of dependencies computed byDEPEN
on the motivating example. We only show dependencies with a
probability over .1.

3.3 Finding the true values
Once we know the vote count of each value, we can decide the

the lowest. Thus, we ta!<_e a greedy algorithm and consider data e value by voting. However, computing vote counts requires
sources in such an order: in the first round, we select a data sourcenqying probabilities of dependencies between data sources, whereas

that is associated with a dependence of the highest probability; in

computing the probabilities of dependencies requires knowing the

later rounds, each time we select a data source that has the maxima{rue values. There is an inter-dependence between them and we

dependence on one of the previously selected sources.

We now consider how to compute the vote counvaince we
have decided an order of the data sources. 4. bt a data source
that votes forv and we denote by (S ~ Sp) the probability of
dependence between souréeandSy. The probability thatS pro-
videsv independently of any data source fre(S), denoted by
I(S),is

I(S)=1

1—cP(S ~ Sp)). (11)

soePre(s)(

The total vote count of is 3 g 5 () 1(S)-

ExampLE 3.3. Continue with Example 3.2. As all dependen-

solve the problem by computing them iteratively.

Algorithm VoTE describes how to discover true values from con-
flicting information provided by multiple data sourceso£ iter-
atively computes the probability of dependence between each pair
of data sources and the vote count of each value, and then for each
object takes the value with the maximal vote count as the true value.
This process repeats until the voting results converge.

Note that it is critical to consider the dependence between sources
from the beginning; otherwise, a data source that has been dupli-
cated many times can dominate the vote results in the first round
and make it hard to detect the dependence between it and its copiers
(as they share only “true” values). Our initial decision on depen-

cies have the same probability, we can consider the data sources ingence is similar to Eq.(8) except considering both possibilities of a

any order. We choose the order.®f, S-, S3. The vote count of;
is 1, that ofS, is 1 — .4 « .8 = .68, and that ofSs is .68% = .46.
So the estimated vote countlis- .68 + .46 = 2.14, very close to
the real one, 2.08. O

We formalize properties of the vote-count estimation as follows,
showing scalability of our estimation algorithm.

THEOREM 3.4. Our vote-count estimation has the following two
properties.

1. Letty be the ideal vote count of a value ahlde the estimated
vote count. Therty < t < 1.5t9.

2. Lets be the number of sources that provide information on
an object. We can estimate the vote count of all values of this
object in timeO(s? log s). i

value being true and being false and we skip details here.

We can prove that when there are a finite number of objeat} in
Algorithm VOTE cannot change the decision for an objécback
and forth between two different values forever; thus, the algorithm
converges. In practice, our experiments show that the algorithm
typically converges in only a few rounds.

THEOREM3.5 (CONVERGENCE OFVOTE). LetS be a set of
good independent sources and copiers that provide information on
objects inO. Letl be the number of objects i®® and no be the
maximum number of values provided for an objecSbyrheVoTE
algorithm converges in at mo8tn, rounds onS andO. a

We illustrate the algorithm on the motivating example.

ExAMPLE 3.6. We run AlgorithnVOoTE on data sources in Ex-
ample 1.1. Figure 3 shows the probabilities of dependencies com-



Table 2: Vote counts of affiliations for Carey and Halevy in the
motivating example.

Carey Halevy
UCI [ AT&T | BEA | Google | UW
Round1|| 1 1 1.24 1.3 1.24
Round 2|| 1 1 1.25 185 | 1.25

puted in each round and Table 2 shows the vote count of affiliations
for CareyandHalevy.

Initially, we compute the probability of dependence betwgen
and S; (sharing three values) as .87 and those betwgerSs, Ss
(sharing four or five values) as .99. Accordingly we decide that the
affiliations are MIT, MSR, MSR, BEA, Google respectively.

In the second round, we refine the dependence probabilities ac-
cording to the selected true values. The probability betwsesnd
S2 (sharing only true values) is reduced to .18 and those betwee
Ss, S4, S5 (sharing two or three false values) remain high; thus,
the refined probabilities more closely reflect the reality. The new
probabilities do not further change our voting results. The voting
converges and finds four correct affiliations. a

n

Setting parameters: We set parameters in our model initially ac-

cording to our a-priori knowledge of the data or by guessing a de-
fault value. During the voting process, in each iteration we can
refinea, e andc based on the computed dependence probabilities

When S, copies fromS; (similar for S; copying fromSs), we
have

Pr(O € Ot|S’2 — S1)
PT’(O S Of|52 — Sl)
Pr(0 € 04|82 — S1)

(1—¢e(S1)) ¢+ P -(1—c¢), (15)
S(Sl)-c-i-Pf-(l—C), (16)
(1—P,—Pp)-(1—o). @7

Note that the probability o6, and.S> providing the same true
or false value is different with different directions of dependence.
By applying the Bayes Rule, we can compute the probabilities of
S11S2, S1 — Sz andSy — S;. If we considerPr(S1 — S2) +
Pr(S; — S1) as the probability of dependence betwesnand
Sa, the three properties in Theorem 3.1 still hold.

4.2 Accuracy of a data source

We next consider how one can compute the accuracy of a data
source. A naive way is to compute the fraction of true values pro-
vided by the source. However, we do not know for sure which are
the true values, especially among values that are voted by similar
number of sources. We instead compute the accuracy of a source
as the average probability of its values being true.

Formally, letV (S) be the values provided by and letm be
the size ofV/(S). For eachv € V(S), we denote byP(v) the
probability thatv is true. We computel(.S) as follows.

)

DI P
A(S) = ZvEV(S) (v

(18)

and the decided true values, and use the new parameters in the next Now we need a way to compute the probability that a value is
iteration. Our experimental results show that different initial pa- true. Intuitively, the computation should consider both how many
rameter settings lead to similar voting results (Section 6), providing sources provide the value and accuracy of those sources. We apply

evidence of robustness.

4. CONSIDERING SOURCE ACCURACY

This section describes thec&u model, which consideraccu-
racy of data sources. We first discuss how the accuracy of sources
can affect our belief of dependence between sources, and then de
scribe how we compute accuracy and take it into consideration
when we count votes.

Our Accu model indeed computes a probabilistic distribution of
various values in the underlying domain for a particular object. We
can either choose the value with the highest probability as the true
value, or store all possible values with their probabilities using a
probabilistic database.

4.1 Dependence w.r.t. accuracy of sources

In this section, we consider different directions of dependence,
denotingS; depending orb; by S1 — S andS> depending orb
by So — Si. Intuitively, if between two data sources and.S:,
the accuracy of the common values is closer to the overall accuracy
of Sy, then itis more likely tha, copies fromS;. We incorporate
this intuition by considering accuracy of sources when we compute
the probability of dependencies.

Let S be a data source. We denote HyS) the accuracyof S
and bye(S) theerror rate of S; (S) = 1 — A(S). We describe
how to computeA(.S) shortly. A similar analysis as in Section 3
leads to the following sets of equations. Whgnand S: are inde-
pendent, we have

Pr(O € O|S1L183) (1 —e(S1))(1 —(S2)) = P, (12)
e(S1)e(S2) _

n
1— P, — Py

Pr(O € Of]S1182) Py, (13)

Pr(O € 04/51183) (14)

a Bayes analysis again.

We start with the case where all data sources are independent.
Consider an objec® € O. Let V(O) be the domain oD, in-
cluding one true value and false values. Lef, be the sources
that provide information oi®. For eactw € V(O), we denote by
S,(v) C S, the set of sources that vote fokS, (v) can be empty).

We denote byl’(O) the observation of which value ea¢he S,
votes for.

To computeP(v) for v € V(O), we need to first be able to
compute the probability o (O) conditioned or being true. This
probability should be that of sources ffi(v) each providing the
true value and other sources each providing a particular false value.

1— A(S)

Pr(T(0)|vtrue) = Tge s, (1) A(S) - Tges, 3, () (19)

Among the values iV(O), there is one and only one true value.

Assume our a-priori belief of each value being true is the same,
denoted by3. We then have

(20)

1— A(S)

n

Pr(¥(0))

Z (5 ' HSE§0(7))A(S) ' HSESO_SO(T’)
veV(0)

Applying the Bayes Rule leads us to

nA(S)
v) T=A(S)
nA(S)
1—-A(S)

Hses,(

P(v) = Pr(vtrug®(0)) = (21)

2 wev(0) Uses, (vo)
To simplify the computation, we define tkenfidencef v, de-
noted byC'(v), as
Z In

Cv) nA(S)
ses, (v)

1—A(S)

(22)

INote that the confidence of a value is derived from, but notvadent to,
the probability of the value.



If we define theaccuracy scor®f a data sourcé as 0: Input: S, 0.

A i I
A(S) = In nA(S) 23) Output: The true value for each object .
1—A(S) 1: Set the accuracy of each sourcelas e;
we have 2: while (accuracy of sources changes && no oscillation of decides ftru
Cl)y= Y. A(S). (24) values) . .
S€8.(v) 3: Compute probability of dependence between each pair of

sources;
So we can compute the confidence of a value by summing up the

) - 8 4: Sort sources according to the dependencies;

ag((:ﬂL:racy scores of its providers. Finally, we can compitte) = 5: Compute confidence of each value for each object;
. Where,w = > ' r e“(0) and compute accuracy of | 6: Compute accuracy of each source;
each source accordingTy. 7: foreach(O € 0)

A value with a higher confidence has a higher probability to be Among all values oD, select the one with the highest
true; thus, rather than comparing vote counts, we compare confi confidence as the true value;
dence of values. The following theorem shows three properties of Algorithm 2: AccuVoTe: Discover true values by considering
Eq.(24). accuracy and dependence of data sources.

THEOREM 4.1. Eq.(24) has the following properties:

1 S1

A
0.08
s2 S3 s2 S3
0.49 » » 0.49
0.49/ 0.44
049 [[049 049 [[055
£ 049 £ 05

0.49

1. If all data sources have the same accuracy, when the size ofSZ

So(v) increases('(v) increases;
2. Fixing all sources inS, (v) exceptS, whenA(S) increases

for S, C(v) increases. o $4*F5a5 55 St *5a s
3. If there existsS € S,(v) such thatA(S) = 1 and noS’ € Round 1 Round 2 Round 11

So(v) such thatA(S") = 0, C(v) = +o0; if there exists
S € S,(v) such thatA(S) = 0 and noS’ € S,(v) such Figure 4: Probabilities of dependencies computed byAccu on
that A(S") = 1, C(v) = —oo. | the motivating example. We only show dependencies where the

) . S sum of the probabilities on both directions is over .1.
Note that the first property is actually a justification of the vot-

ing strategy (Proposition 2.1). The third property shows that we algorithm typically converges soon; though, the precise condition
should be careful not to assign very high or very low accuracy to a fOF convergence remains an open pgoblem. Finally, we note that the
data source, which has been avoided by defining the accuracy of acOmplexity of each round i©(|O|S|” log |S]).

source as the average probability of its provided values.

. . . ExXAMPLE 4.2. Continue with the motivating example. Figure 4
Finally, if a data sourcé& copies a value from other sources, we

; . . > shows the probability of dependence, Table 3 shows the computed
should ignore§ vyhen computing the confidence of Following accuracy of each data source, and Table 4 shows the confidence of
the same analysis, we have , affiliations computed fo€areyandHalevy.

Clv) = Z A (S)(S)- (25) Initially, Ln.1 of AlgorithmAccuVoTE sets the accuracy of each

S€So(v) source to .8. Accordingly, Ln.3 computes the probability of depen-

In the equation/(.S) is computed by Eq.(11), except that we sort dence between sources as shown on the left of Figure 4. Taking the
the sources differently: if the probability &8, — S2 is much dependence into consideration, Ln.5 computes confidence of the
higher than that ob> — S1, we considelS; as a copier and order  values; for example, fo€areyit computes 1.61 as the confidence
S before S;; otherwise, we consider both directions as equally of valueUCI and AT&T, and 2.0 as the confidence of valBEA.
possible and sort the sources following the same rule as for the Then, Ln.6 updates the accuracy of each source to .52, .42, .53,

basic model. .53, .53 respectively according to the computed value confidence;
.. the updated accuracy is used in the next round.
4.3 Combm'ng accuracy and dependence Starting from the 2nd roundh is considered more accurate and

We now extend the WTE algorithm to incorporate analysis of its values are given higher weight. In later rounds;cu gradu-
accuracy. We need to compute three measures: accuracy ofsource ally increases the accuracy 6 and decreases that &f;, S+ and
dependence between sources, and confidence of values. AgccuracSs. At the 4th roundAccu decides thatJCl is the correct affil-
of a source depends on confidence of values; dependence betweeiation for Careyand finds the right affiliations for all researchers.
sources depends on accuracy of sources and the true valuesaelecteFinally, Accu terminates at the 11th round and the source accu-
according to the confidence of values; and confidence of valuesracy it computes converges close to the expected ones. O
depends on both accuracy of and dependence between data source . .

We conduct analysis of both accuracy and dependence in eachzcl-4 Comparison with TRuTHFINDER
round. Specifically, Algorithm &cCUVOTE starts by setting the Yin et al. [16] proposed RUTHFINDER, which considers ac-
probability of each value as one minus the overall error rate, iter- curacy of sources in truth discovery. Whereas we both consider
atively (1) computes accuracy and dependence based on the confiaccuracy of sources, our model differs from theirs.
dence of values computed in the previous round, and (2) updates The most important difference is that we consider the depen-
confidence of values accordingly, and stops when the accuracy ofdence between sourcesRITHFINDER uses adampening factor
the sources becomes stable. Note thaCAVOTE may not con- to address the possible dependence between sources; however, this
verge: when we select different values as the true values, the direc-approach is not necessarily effective and for our motivating exam-
tion of the dependence between two sources can change and in turrple, TRUTHFINDER incorrectly decides that all values provided by
suggest different true values. We stop the process after we detectSs are true. Our model considers dependence in a principled fash-
oscillation of decided true values. Our experiments show that when ion. By examining the probability that a pair of data sources are
the number of objects is much more than the number of sources, ourdependent and its effect on voting, we are able to apply dampening



Table 3: Accuracy of data sources computed byAccu on the
motivating example.

l [ S1]S2]Ss [ 8155 ]

Round1 | 52| 42 ] 53| 53| 53
Round 2 | 63 | .46 | .55 | 55| 41
Round3 | 71| .52 | .53 | 53| 37
Round4 | 79| .57 | 48| 48| 31
Round 11| 07 | .61 | .40 .40 | 21

Table 4: Confidence of affiliations computed forCarey and
Halevy in the motivating example.

Carey Halevy
UCI | AT&T | BEA || Google | UW
Round1 || 1.61| 1.61 2.0 2.1 2.0
Round 2 || 1.68 1.3 2.12 2.74 2.12
Round 3 || 2.12 | 1.47 2.24 3.59 2.24
Round 4 || 251 | 1.68 2.14 4.01 2.14
Round 11| 4.73 | 2.08 1.47 6.67 1.47

only when appropriate and apply different “dampening factors” for
different data sources.

Another major difference is that we compute the probability of
a value being true in a different way. RUTHFINDER computes
it as the probability that at least one of its providers provides the
true value and ignores sources that vote for other values. As they
pointed out, they have the problem of “overly high confidence” if
they do not apply the dampening factor. Our computation (Eq.(21))

considers all data sources and considers both the possibility that the

value is true and the possibility that the value is false.

Section 6 presents an experimental comparison between the two . . .
P P P value tends to have a high probability of being true and thus lowers

approaches.

5. EXTENSIONS

This section describes several extensions of thedmodel by
relaxing theCategorical-valuecondition and theUniform-false-
value-distributioncondition, and by considering probabilities of
a value being true in dependence discovery. The extensions we

the true value can occur more often than others. We extenduA
for this situation as follows.

We definef(d),d € [0,1], as the percentage of false values
whose distribution probability ig}; thus,fo1 f(d) = 1. Then, the
probability that two false-value providers provide the same value is
J, d*f(d) instead of 2)?.n = L. Accordingly, we revise Eq.(13)
as

1
Pr(0 € O¢|S1L8s) = E(Sl)a(Sg)/ d?f(d) = P;. (27)
0
Similarly, we need to revise Eq.(19) as follows. Let
E = o mdf(d)(156]=150(0)])

Pr(¥(0)[vtrue) = Tiges, (1) A(S) - Tges, _s, (u) (1 — A(S)) - E.
(28)

AccuPR: As the decision of a value being true or false is rather
probabilistic, we can use the probability in our dependence analy-
sis. In particular, we denote Byr (S, v) the probability that source

S independently provides value then

Pr(S,v) = P(v) - A(S) + (1 — P(v))

. 1_7‘4(5) (29)
n

Accordingly, we compute probability of two sources providing a
particular pair of values; andv, respectively, denoted byr (vi,v2).
Then,

Pr(v,v|S1LS2) = P(S1,v)-P(S2,v) =P, (30)
Pr(vi,ve|S1LS2) = P(S1,v1) P(S2,v2) = Py, (31)
Pr(v,v|S2 — S1) = ¢P(S1,v)+ (1 —¢)P., (32)

Pr(vi,v2|S2 — S1) = (1—c)P;. (33)

We can then apply the Bayes Rule similarly. We note that A
UPR implicitly captures the intuition that a frequent-occurring
false value is not a strong indicator of dependence: a frequent false

C

the probability of dependence between its providers.

6. EXPERIMENTAL RESULTS

We applied our truth-discovery algorithms on a real-world data

set. For the purpose of systematically testing our models in vari-

ous conditions, many not easily found in real data, we also tested
our algorithms on synthetic data. In addition, we examined if our

present are complementary to each other and can be easily comg|gorithm can prevent falsification of true values.

bined for a full model.

SIM: We consider similarity between values. Leandv’ be two
values that are similar. Intuitively, the sources that vote/foalso
implicitly vote for v and should be considered when counting votes
for v. For example, a source that claitd$V as the affiliation may
actually meardWiscand should be considered as an implicit voter
of UWisc

We extend A cu by incorporating the similarity model in [16].
Formally, we denote byim(v, v") € [0, 1] the similarity between
v andv’, which can be computed by edit distance of strings, dif-
ference between numerical values, etc. After computing the confi-
dence of each value of obje€, we adjust them according to the
similarities between them as follows:

C*(v)=C()+p- Z C') - sim(v,
v/ #v

wherep € [0, 1] is a parameter controlling the influence of similar
values. We then use the adjusted confidence in computation in later
rounds.

'), (26)

6.1 Experimental settings
We first describe the synthetic data sets we generated and leave

the description of the real-world data set to Section 6.5. We con-
sider three types afiniversesof data sources, where each source
provides information for all objects.

1. Indep-source universeontains 10 independent sources;

2. Copier universeontains 10 independent sources and 9 copiers
that copy from the same independent source and provide 20%
of the values independently;

Pareto universeontains 25 to 100 sources, of which 20% are
independent and 80% are copiers. Among the independent
sources, 20% have an error rate of .2 and 80% have an error
rate of .5. Among the copiers, 80% copy from one of the
more accurate independent sources and 20% copy from one
of the less accurate independent sources. Also, among the
copiers, 50% provide 10% of the values independently with
an error rate of .1, 25% provide 10% of the values by ran-
domly picking a value in the domain, and 25% only ctpy

3.

NonUni: In reality, false values of an object may not be uniformly

2We call it Pareto universas it observes thBareto Rule (80/20 Ruleh

distributed; for example, an out-of-date value or a value similar to many aspects.



For the first two types of universes, we consider three cases:

authority, where every independent source has the same error rate;

copy-from-non-authoritywhere there is amuthority source that
provides the true value for each object, but the copiers copy from a
non-authority source; andopy-from-authority where there is an
authority source and the copiers copy from it. Note that in the
Indep-source universehe latter two cases are the same since we
have no copier.

case, where the independent sources often do not agree with each
other and so the values that are copied 9 times (even thoogiuA
detects the copying) have a slightly higher confidence. The copiers
thus are considered to be more accurate and gradually dominate the
results. This problem disappears when more independent sources
are present.

Effects of parameters: We also conducted experiments with dif-
ferent parameter settings.

For each type of universe and each case, we randomly generated gt \ve varied parameters in the random generation of data

the set of data sources according1g the error raten,,, the num-

ber of incorrect values, andl,, the number of objects. The values
range from O ton,,, where we consider 0 as the true value and the
others as false. We varied, from .1 to .9,n,, from 5 to 100, and

o, from 5 to 100. ForPareto universewe in addition randomly
decided from which source a copier copies according to the distri-

sources. We observed that when there are fewer objects or fewer
false values in the domain, there is less statistical evidence and so
the precision of the results can be lower and less stable; when there
are more sources, true values are provided by more sources and the
precision can be higher.

Second, we varied voting parameters, including:, ¢ andn.

bution. F_or each se_t of paramett_ers, we randpmly generated the datdys ghserved that ranging ande, the a-priori probabilities, from
set 100 times, applied our algorithms to decide the true values, and ; 5 g goes not change precision of the results. This observation is

reported the average precision of the results. We dedfiaeision
of the results as the fraction of objects on which we select the true

common in Bayes analysis. We also observed that rangifigm
10 to 100 does not change the precision and setting it to 1000 or

values (as the number of true values we return and the real number; 5900 even increases the precision. However, rangiingm O to

of true values are both the same as the number of objectee¢hl
of the results is the same as the precision). Note that this definition
is different from that of accuracy of sources.

We implemented models EPEN, Accu, ACCUPR and v as
described in this paper. We also implemented the following meth-
ods for comparison:

e NAIVE conducts naive voting;

NAIVESIM conducts naive voting but considers similarity
between values;

AccuNoDEPconsiders accuracy of sources as we described
in Section 4, but assumes all sources are independent;

TF applies the model presented in [16].

TFNoOSIM is the same as TF except that it does not consider
similarity between values.

TFNoDAM is the same as TFdBIM except that it does not
apply the dampening factor (0.3).

For all methods, when applicable we (1) se= .2 andc = .8,
(2) sete andn to the value used in generating the data sources, (3)
sete = .25 for the Pareto universeand (4) sep = 1 for Sim. We

1 can significantly change the precision. As shown in Figure 7, in
the Copier univers€c, = .8) andno-authoritycase, when we set

c to ¢, Accu obtains a precision of .99 when, = .5 and .66
whene,, = .8. However, when we vary, in case of, = .5, the
precision drops significantly whenis set to.2; in case ok, = .8,

it drops significantly where is set to.6. Recomputing: in each
iteration in voting can effectively solve the problem: the precision
remains stable whes, = .5 and drops at = .2 whene,, = .8.
Thus, our models are not sensitive to initial setting of parameters in
a reasonable range.

6.3 Comparing truth-discovery algorithms

To examine the effect of each algorithm in a more complex uni-
verse, we experimented on tiRareto universe Figure 8 shows
the precision for a universe with 100 values. We observe tlaat A
CUPR, Accu and DePEN obtain the highest precision, showing
that considering dependence between sources significantly improve
results of truth discovery, and when more accurate sources arelcopie
more often, considering accuracy of sources does not necessarily
help. AccuNoDEepr, TF and TFNoDAM obtain even lower pre-
cision than MIVE, showing that considering accuracy of sources

implemented the algorithms in Java and conducted our experimentswhile being unaware of dependence can become more vulnerable

on a WindowsXP machine with AMD Athlon(tm) 64 2GHz CPU
and 960MB memory.

6.2 Comparing dependence-detection models

We first compare BPENand Accu with NAIVE on the first two
types of universes. We report our results for = 100 ando,, =

in presence of duplications. @cuNoDEP and TFNoDAM both
extend MIVE with only analysis of source accuracy but do so in
different ways; between themd@UNODEP obtains better results.
Effects of assumptions and indirect copying:To examine ef-
fects of assumptions in Section 2 and indirect copying (transitive
copying and co-copying from a hidden source) on our model, we

100 and briefly discuss the results for other parameter settings at change thePareto universeas follows: (1)dependent valueghe

the end of this section. Figure 5 and 6 plot the precision of the
results.

In theIndep-source univers®EPENoObtains the same precision
as NaIve, and Accu obtains a precision of 1.0 when an authority

last 20 values provided by each independent source are the same
as the first 20 values correspondingly, and the 81st to 90th values

provided by each copier is the same as the first 10 values corre-

spondingly; (2)transitive copyinga copier can copy from any in-

source exists. Being able to obtain the same results as simple votingdependent source or other copier as far as no loop copyingp(3)
in absence of copiers is important: it shows that we do not generatecopying from hidden sourcesigh-accuracy independent sources

false dependence that can change the voting results.
When there are copiers,AWE is biased by the copiers and per-

are removed; (4)oop copying each low-accuracy independent
sourceS has a peef’, such thatS provides the first half of values

forms badly. Our algorithms consider dependence between sourcesndependently and’ provides the second half independently, and

so obtain much higher precision. In particulare BEN success-
fully detects copiers and in general obtains similar results as if the
copiers did not exist. Acu obtains a precision of 1.0 when there
exists an authority source and a similar precision ®PEN oth-
erwise. The only exception is when, = .9 in the no-authority

they each copy the rest of the data from each otherdépendent
copying copiers are divided into pairs, and sources of each pair
copy from the same source and copy the same values. We observe
exactly the same precision ofo&u with different combinations of
these changes when there are at least 50 sources. When there are
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) . Figure 8: Precision in the Pareto universe.
universe. when parameterc varies.

Innocent:e; = .5 andcy = 1;
Knowledgeablez; = 0 andcy = 1,
Smart:ey = .5 andcy < 1,
Sophisticatedz s is very low andcy < 1.

Preventing Falsification

mAccu Indep
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We want to find out how many falsifiers are required to falsify the
true values forf objects. For each category of falsifiers, we started
from one randomly generated independent falsifier and gradually
added copier falsifiers. If -1 is selected as the true value for each
object of falsification three times consecutively, we stopped and
reported the number of falsifiers. If after reaching 1000 falsifiers
the falsifiers still cannot succeed, we stopped and reported 1000.
Figure 9 shows the results for different types of falsifiers. We have
several observations.

First, it is very hard for innocent and knowledgeable falsifiers to
falsify the true values: even 1000 falsifiers cannot falsify one true
value against 25 non-falsifiers.
only 25 sources (5 independent), no combination of the first three  Second, wher; = .8, it requires around 500 smart falsifiers
changes the precision, change (4) increases the precision by .01to falsify one true value; but whery = .5, the falsifiers look like
and change (5) decreases the precision by .02, showing robustnestdependent sources and only 6 falsifiers are required under the
of Accu. Accu algorithm. From another perspective, this result indicates
. . . that even if a wrong value is provided by a set of more accurate
6.4 Preventing falsification sources, a small number of independent soutiodsave the chance

We next studied whether our algorithms can prevent falsification. to fix it.

We consider @areto universavith 25 data sources (so 5 indepen- Third, under the £cu model it is easy for sophisticated falsi-
dent sources) and a set of falsifiers who intend to falsify the true fiers withe; = 0 andcy = .8 to win: only 4 falsifiers are required
values on a set of objects. Among the falsifiers, one is a bad in- to falsify one value. From another perspective, this indicates that
dependent source and the others are copiers. For each object thaa value provided by an authority data source is more likely to be
the falsifiers intend to falsify, all falsifiers provide value -1, whichis considered as true, even if a different value is provided by several
not provided by any other source in the universe. For the rest of the less accurate sources.

objects, the independent falsifier provides values observing error  Fourth, it is hard even for sophisticated falsifiers to falsify mul-
ratees, and the copiers either copy from the independent falsifier tiple true values. Falsifying 5 true values requires more than 700
with probability c¢, or randomly pick a value from the domain. sophisticated falsifiers withy = 0 andcy = .8. However, it is

We classify falsifiers into the following four categories. still easy for smart falsifiers to falsify a set of true values: no more

Falsifiers o win
@
I}
S

W
S
S

f=1)  f=5)

Type of falsifiers

Figure 9: Number of falsifiers required to falsify a set of true
values. Our algorithms can effectively prevent innocent and
knowledgeable falsifiers from falsifying one true value and pre-
vent smart and sophisticated falsifiers from falsifying multiple
true values.



Table 5: Different types of errors by naive voting. Table 7: Bookstores that are likely to be copied by more than

Missing | Additional Mis- Mis- Incomplete 10 other bookstores. For each bookstore we show the number
au;gors aUTOfS °fd§””9 Spez'“”g na;nes of books it lists and its accuracy computed bySIM.
Bookstore #Copiers| #Books | Accu
Table 6: Results on the book data set. For each method, we Caiman 175 1024 55
report the precision of the results, the run time, and the number MildredsBooks 14.5 123 .88
of rounds for convergence. Accu and DEPEN obtain a high COBU GmbH & Co. KG 135 131 91
precision. THESAINTBOOKSTORE| 13.5 321 | .84
Limelight Bookshop 12 921 .54
Model Precision| Rounds| Time(s) Revaluation Books 12 1091 | .76
Players Quest 115 212 .82
NAIVE 71 1 2
AshleyJohnson 115 77 .79
NAIVE SIM 74 1 2
Powell's Books 11 547 .55
AcCCcuNODEP .79 23 11 IohaC 0 8
DEPEN 83 3 28.3 AlphaCraze.com 10.5 157 .85
Accu 87 22 185.8 Avg 128 460 | .75
SIM .89 18 197.5 .
TENOSIM 71 10 5 Table 8: Difference between accuracy of sources computed by
TES 83 ) 11.6 our algorithms and the sampled accuracy on the golden stan-

dard. The accuracy computed byAccu is the closest to the
than 100 sources are required to falsify 50 true values, reflecting Sampled accuracy.

one direction for improvement. Sampled|| Sim | Accu | Accu TF
) NoDEP | NOSIM

6.5 Experiments on real-world data Avgsrcaccu|| 542 | 607 | .614 | 623 908
Avg diff - .082 | .087 .096 .366

We experimented on a real-world data set also used in°[16]

(we removed duplicates). The data set was extracted by searchingng similarity between author lists increased the precision ot
computer-science books @kbeBooks.comFor each bookAbe- only slightly (by 2.3%), but increased the precision of T&Sim
Books.conreturns information provided by a set of online book- significantly (by 16.9%); indeed, TFdSIM obtained the same pre-
stores. Our goal is to find the list of authors for each book. In Gision as MIVE.
the data set there are 877 bookstores, 1263 books, and 24364 list- 1 fyrther understand how considering dependence and precision
ings (each listing contains a list of authors on a book provided by a of soyrces can affect our results, we looked at the books on which
bookstore). _ , Accu and NaIVE generated different results and manually found
We did a pre-cleaning of authors’ names and generated a nor-he correct authors. There are 143 such books, among whechuA

malized form that preserves the orQer of the authors and the first 5 nq NajvE gave correct authors for 119 and 15 books respectively,
name and last name (ignoring the middle name) of each author. Ongnq photh gave incorrect authors for 9 books.

average, each book has 19 listings; the number of different author - rina|ly, DepENWas quite efficient and finished in 28.3 seconds.
lists after cleaning varies from 1 to 23 and is 4 on average. We ap- |1 took Accu and Sm longer time to converge (3.1, 3.3 minutes

plied various models on this data setandeset .2,c = .8,e = .2 ragpectively); though, truth discovery is often a one-time process
andn = 100 when applicable. Though, we observed that ranging 54 so taking a few minutes is reasonable.

« from .05 to .5, ranging from .5 to .95, and ranging from .05
to .3 did not change the results much. We compared similarity o
two author lists using 2-gram Jaccard distance.
We used a golden standard that contains 100 randomly selecte
books and the list of authors found on the cover of each book (the : ) .
same as used in [16]). We compared the results of each method WithSl.dependlng orb: Is over 2/3 of the probablllty o, ?“d S2
being dependent, we considgr as acopierof Sz; otherwise, we

the golden standard and reported the precision. We consider miss- 2 - .
ing or additional authors, mis-ordering, misspelling, and missing considerS; andS; each has .5 probability to becapier. Table 7

first name or last name as errors; though, we do not report miss- shows the bookstores whose information is likely to be cop_ied b_y
ing or misspelled middle nam&s Table 5 shows the number of more t_han 10 bookstores. On average each of them provides in-
errors of different types on the selected books if we apply a naive formation on 460 books and has accuracy .75. Note that among

voting (note that the result author lists on some books may contain all book;tores, on average each provides information on 2.8 books,
multiple types of errors). conforming to the intuition that small bookstores are more likely to

o o ] B copy data from large ones. Interestingly, when we applieavid
Precision and Efficiency Table 6 lists the precision of each al- o only the information provided by bookstores in Table 7, we ob-

f Dependence and source accuracyOut of the 385,000 pairs of
bookstores, 2916 pairs provide information on at least the same 10
(Pooks and among themiN found 508 pairs that are likely to be
dependent. Among each such p&irand.Ss, if the probability of

gorithm. Sm obtained the best results and improved ovenh tained a precision of only .58, showing that bookstores that are large
by 25.4%. MIVESIM, ACCUNODEP and DEPEN each extends  and referenced often actually can make a lot of mistakes.
NAIVE on a different aspect; while all of them increased the preci-  Finally, we compare the source accuracy computed by our algo-

sion, DEPENincreased it the most. We also observed that consider- rithms with that sampled on the 100 books in the golden standard.
Specifically, there were 46 bookstores that provide information on

more than 10 books in the golden standard. For each of them we
computed thesampled accuracys the fraction of the books on

SWe thank authors of [16] for providing us the data set.
“Note that the precision we reported is not comparable with riyaorted
in [16], as their partially correct results are each giveraaipl score be-

tween 0 and 1, mis-ordering of authors is not penalized, bedriect or which the bookstore provides the same author list as thg golden
missing middle name is penalized. standard. Then, for each bookstore we computed the difference
5[16] reports that correct authors were provided for 85 bodi@wvever, between its accuracy computed by one of our algorithms and the

they did not count mis-ordering of authors as incorrect. sampled accuracy (Table 8). The source accuracy computed by



SIM is the closest to the sampled accuracy, indicating the effective- where each object is associated with a probability distribution of
ness of our model on computing source accuracy and showing thatvarious values in the underlying domain. Experimental results show
considering dependence between sources helps obtain more precisthat our algorithms can significantly improve accuracy of truth dis-
source accuracy. The source accuracy computed bydSmM is covery and are scalable when there are a large number of data
too high, consistent with the observationaerly high confidence sources.
made in [16]. Our work is a first step towards integrating data among sources
where some can copy from others. There are many future topics
6.6 Summary under this umbrella. First, we are extending our current models
Our experiments on real-world and synthetic data show the fol- by considering evolution of true values and evolution of data in a
lowing features of our models. dynamic world. Second, we plan to combine techniques of record
o linkage and truth discovery to enhance both of them. Third, we plan
* In presence of source dependence, our models significantly 1, |everage knowledge of dependence between sources to answer

improve truth-discovery results by considering dependence gueries more efficiently in a data integration system.
between sources; in absence of dependence, our models do

not generate false dependence that can change the voting re
sults, thus obtain similar results as not considering depen- 9. REFERENCES
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8. CONCLUSIONS

In this paper we studied how to improve truth discovery by de-
tecting dependence between sources and analyzing accuracyadsour
We considered a snapshot of data and developed Bayesian models
that discover copiers by analyzing values shared between sources.
The results of our models can be considered as a probabilistic database,



